1,4-Di-O-tert-alkyl-L-threitols as Chiral Auxiliaries in the Asymmetric Nucleophilic Addition of Alkyllithiums to Hydrazones ${ }^{\dagger}$

Yu-Tsai Hsieh, Gene-Hsiang Lee, Yu Wang, and Tien-Yau Luh*
Department of Chemistry, National Taiwan University, Taipei, Taiwan 106, Republic of China

Received September 11, 1997

Abstract

The applications of 1,4-di-O-tert-alkyl-L-threitols as chiral auxiliaries in the asymmetric nucleophilic addition of alkyllithiums to hydrazones are investigated. Chiral acetal-hydrazones 9, obtained from the chiral acetals $\mathbf{8}$ by ozonolysis followed by treatment with dimethylhydrazine, are allowed to react with organolithium reagents in toluene at $-78^{\circ} \mathrm{C}$ to give $\mathbf{1 5}$ with excellent diastereoselectivity. The stereochemical assignments were based on the X-ray crystal structure of 17a. The absolute configuration at C_{2} of the major isomer of the adducts $\mathbf{1 5}$ was thereby determined to be S. The nucleophile thus attacked from the si face of the $\mathrm{C}=\mathrm{N}$ moiety. The effect of solvent on the diastereoselectivity of the reactions of $\mathbf{9}$ with organolithium reagents is reported. Polar aprotic sol vent shows poor diastereoselectivity, and the diastereoselectivity is reversed when the reaction is carried out in THF. Reaction of dl-14 with methyllithium has been studied for comparison purposes and the reaction shows the opposite selectivity. Chelation intermediates $\mathbf{1 8}$ and $\mathbf{2 6}$ are proposed for these reactions to account for the observed stereoselectivities.

Chiral amines, as a class of compounds, exhibit a variety of biological activities and have served as useful reactive intermediates in organic synthesis. ${ }^{1}$ The reductions of ketimines and nucleophilic additions to aldimines in a chiral environment provide a useful entry to the corresponding asymmetric amines. ${ }^{3}$ To this end, there has been increasing use of chiral hydrazones as precursors of chiral amines. ${ }^{4-6}$ For example, reactions of $\mathbf{1}$ with Grignard reagents lead to $\mathbf{2}$ as the major product (eq 1). ${ }^{5}$ The chelation intermediate $\mathbf{4}$ has been suggested to be responsible for the selectivity. In contrast, $\mathbf{3}$ is obtained predominantly when an organolithium reagent is employed as the alkylating agent. Presumably, the latter reaction proceeds by nucleophilic attack from the si face of the nonchelative imine 5 .

We have recently reported a convenient synthesis of tunable chiral C_{2}-diols 7 derived from L-threitols 6 (eq

[^0]2). ${ }^{11-13}$ Excellent diastereoselectivities have been found in the Simmons-Smith cyclopropanation ${ }^{13}$ and in ring openings of acetals ${ }^{11 a}$ using these tunable chiral auxiliaries. The alkoxy side chain in $\mathbf{7}$ may serve either as a

[^1]Table 1. Synthesis of Hydrazone 9

R^{1}	R^{2}	$\mathbf{8}$ (\%yield)	$\mathbf{9}$ (\%yield)
H	H	$\mathbf{a}(90)$	$\mathbf{a}(88)$
Me	H	$\mathbf{b}(86)$	$\mathbf{b}(92)$
$\mathrm{i}-\mathrm{Pr}$	H	$\mathbf{c}(83)$	$\mathbf{c}(90)$
H	Me	$\mathbf{d}(81)$	$\mathbf{d}(75)$
Me	Me	$\mathbf{e}(85)$	$\mathbf{e}(70)$
$\mathrm{i}-\mathrm{Pr}$	Me	$\mathbf{f}(85)$	$\mathbf{f}(88)$

bulky substituent or as an additional auxiliary ligand

during the formation of a chelating complex with a metal catalyst in such a way that the stereoselectivity of these reactions is enhanced. In this paper, we wish to report the details of the use of these chiral diol auxiliaries in the asymmetric nucleophilic addition of organolithium reagents to hydrazones.

Results

Synthesis of 9. Acid-catalyzed reaction of chiral diol 7 with an α, β-unsaturated carbonyl compound $\left(\mathrm{R}^{2}=\mathrm{H}\right.$ or Me) gave the corresponding acetal $\mathbf{8 a}$ or ketal $\mathbf{8 b} .{ }^{13}$ Ozonolysis ${ }^{15}$ of 8 followed by treatment with dimethylhydrazine afforded acetal-hydrazones 9 in good yield (eq 3). The results are tabulated in Table 1. Reference

compounds $\mathbf{1 2} \mathbf{2}^{4,16}$ and $\mathbf{1 4}$ were prepared following similar

[^2]Table 2. \quad Reactions of $\mathbf{9 b}\left(R^{\mathbf{1}}=\mathbf{M e}, \mathbf{R}^{\mathbf{2}}=\mathrm{H}\right)$ with $\mathbf{R}^{\mathbf{3}} \mathrm{Li}$ under Different Conditions

R^{3}	temp (reaction time)	$2 \mathrm{~S} / 2 \mathrm{R}$
Me	$25^{\circ} \mathrm{C}(12 \mathrm{~h})$	$55 / 45$
	$-25^{\circ} \mathrm{C}(12 \mathrm{~h})$	$76 / 24$
	$-78^{\circ} \mathrm{C}(4 \mathrm{~h})$ then $25^{\circ} \mathrm{C}(8 \mathrm{~h})$	$88 / 12$
	$-78^{\circ} \mathrm{C}(10 \mathrm{~h})$	$95 / 5$
$\mathrm{n}-\mathrm{Bu}$	$-15^{\circ} \mathrm{C}(10 \mathrm{~h})$	$71 / 29$
	$-78^{\circ} \mathrm{C}(10 \mathrm{~h})$	$92 / 8$

Table 3. Reaction of Organolithium Reagents with 9 in Toluene at $-78{ }^{\circ} \mathrm{C}$

entry	9	R^{1}	R^{2}	R^{3}	15 (\%yield)	2S/2R
1	a	H	H	Me	a (88)	91:9
2	a	H	H	$\mathrm{n}-\mathrm{Bu}$	b (75)	89:11
3	a	H	H	Ph	c (71)	98:2
4	b	Me	H	Me	d (90)	95:5
5	b	Me	H	$\mathrm{n}-\mathrm{Bu}$	e (83)	92:8
6	b	Me	H	Ph	f (85)	98:2
7	c	i-Pr	H	Me	g (86)	91:9
8	C	$i-\mathrm{Pr}$	H	$\mathrm{n}-\mathrm{Bu}$	h (73)	92:8
9	c	i-Pr	H	Ph	i (70)	98:2
10	d	H	Me	Me	j (84)	>99:1
11	d	H	Me	$\mathrm{n}-\mathrm{Bu}$	k (68)	98:2
12	e	Me	Me	Me	I (82)	> 99:1
13	e	Me	Me	$\mathrm{n}-\mathrm{Bu}$	m(70)	98:2

procedures (eqs 4 and 5).

Nucleophilic Addition to 9. In the beginning of this investigation, we screened the conditions for the nucleophilic addition of alkyllithium to 9 to form $\mathbf{1 5}$ (eq 6).

Reaction at low temperature was essential to achieve
(14) Fujioka, H.; Fuji, M.; Okaichi, Y.; Yoshida, T.; Annoura, H.; Kita, Y.; Tamura, Y. Chem. Pharm. Bull. 1989, 37, 602. See also: Denmark, S. E.; Weber, T.; Piotrowski, D. W. J . Am. Chem. Soc. 1987, 109, 2224.
(15) Heitz, M. P.; Grllinrty, F.; Mioskowski, C. Tetrahedron Lett. 1986, 27, 3859.
(16) Takano, S.; Ohashi, K.; Sugihara, T.; Ogasawara, K. Chem. Lett. 1991, 203.

Figure 1. ORTEP of (2S)-17a. Thermal ellipsoids are shown in 30% probability.

Table 4. Conversion of $\mathbf{1 5}$ to Phthalimide 17

$\mathbf{1 6}$	R^{1}	R^{2}	R^{3}	$\mathbf{1 7}$ (\%yield)
\mathbf{d}	Me	H	Me	$\mathbf{a}(91)$
\mathbf{e}	Me	H	$\mathrm{n}-\mathrm{Bu}$	$\mathbf{b}(85)$
\mathbf{k}	H	Me	$\mathrm{n}-\mathrm{Bu}$	$\mathbf{c}(93)$
\mathbf{l}	Me	Me	Me	$\mathbf{d}(82)$
\mathbf{m}	Me	Me	$\mathrm{n}-\mathrm{Bu}$	$\mathbf{e}(85)$

high diatereoselectivity (Table 2). Table 3 summarizes representative examples of the nucleophilic addition of organolithium reagents to 9. The diastereomeric ratio was determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy of 15. The signal for the proton at C_{2} of the 2 S -isomer appeared at a slightly higher field ($\Delta \delta \sim 0.02-0.04$) than that of the corresponding 2R-isomer. ${ }^{17}$ Treatment of the major stereoisomers (2S)-15 with Raney nickel followed by phthalic anhydride yielded the corresponding phthalimides (2S)-17 (eq 7) The results are outlined in Table 4.

The X-ray structure of (2S)-17a is shown in Figure 1 and the absolute configuration at C_{2} of the major isomer of the adducts 15 was thereby determined.

Discussion

As can be seen from Table 3, good to excellent dastereosel ectivities were obtained from the reaction of 9 with organolithium reagents in toluene at $-78{ }^{\circ} \mathrm{C}$. Nucleophilic addition occurred preferentially from the si face of the hydrazone moiety in 9 . Two possible conformers 18 and 19 are proposed to rationalize the observed stereoselectivity. In 18, lithium can coordinate to the imino nitrogen atom as well as to the two oxygen atoms to form a chelation complex. Then direct transfer of R^{3} anion

[^3]Table 5. Solvent Effect on the Diastereoselectivity of the Addition of RLi to 9 at $-78{ }^{\circ} \mathrm{C}$

entry	substrate	RLi	solvent	product (2S/2R)
14	9a	n-BuLi	ether	15b (76/24)
15		n-BuLi	THF	15b (31/69)
16		PhLi	THF	15c (33/67)
17	9b	n-BuLi	ether	15e (83/17)
18		n-BuLi	THF	15e (35/65)
19		PhLi	THF	15f (37/63)
20	9c	n-BuLi	ether	15h (60/40)
21		n-BuLi	THF	15h (32/68)
22	20a	MeLi	ether	21a (80/20) ${ }^{\text {a }}$
23		n-BuLi	ether	21b (55/45) ${ }^{\text {a }}$
24	20b	n-BuLi	toluene	21c (78/22)
25		n-BuLi	THF	21d (36/64)

a Reference 4.
from lithium may occur stereoselectively from the si face of the $\mathrm{C}=\mathrm{N}$ moiety. Similar intermediate has been suggested in the CeCl_{3}-mediated nucleophilic addition of chiral oximes. ${ }^{14}$ Alternatively, conformers 19 and 5^{5} are similar and the nucleophilic attack may thus occur from the less hindered si face of the imine moiety. To differentiate these two possibilities, an investigation of the solvent effect on the reaction of 9 with organolithium reagents have been carried out.

18

19

Solvent Effect. Organolithium compounds are known to form complexes with the oxygen donor solvents. Accordingly, the stability of the chelation complex $\mathbf{1 8}$ in a nonpolar hydrocarbon solvent and in a polar aprotic solvent would be quite different. In other words, if intermediate 18 is responsible for the formation of 15, the selectivity might be changed when the reaction is carried out in a polar solvent. Thus, the effect of solvent on the diastereoselectivity of the reactions of 9 with organolithium reagents is summarized in Table 5.

It is interesting to note that the reactions of 20a with alkyllithium in ether yield 21a and 21b with poor selectivity (entries 22 and 23). ${ }^{4}$ The reactions of related methoxy derivative 20b with n-BuLi at $-78^{\circ} \mathrm{C}$ in toluene as well as in THF were also examined (entries 24 and 25). These reactions were much less selective than those with a bulky alkoxy substituent in the chiral auxiliary under the same conditions (entry 24, of Table 3).

As is evident from Table 5, the diastereoselectivity was reversed when the reaction was carried out in THF as
opposed to diethyl ether. Furthermore, when $\mathbf{9 b}$ was treated with MeLi in toluene in the presence of 2 equiv of TMEDA, a 33/67 (2S/2R) diastereomeric mixture of 15d was obtained. Again, this selectivity is opposite to that obtained from the same reaction in the absence of an amine ligand (entry 4, Table 3). Both THF and TMEDA are good donor ligands for organolithium compounds. The oxygen atoms of $\mathbf{9}$ may be less competitive in the accommodation of lithium to form intermediate 18 when the reaction is carried out in THF or in the presence of such a chelating amine. There might exist a rapid conformational equilibrium between 19 and 22 (eq 8) making the nucleophilic addition less selective.

22
Reaction of dl-14 with MeLi. To show that $\mathbf{1 8}$ is involved in the overall asymmetric nucleophilic addition to 9 , we examined the reaction of $\mathrm{dl}-14$ with methyllithium (eq 9). The hydrazines $\mathbf{2 3}$ were converted to $\mathbf{2 5}$ in a manner similar to that described in eq 7. The X-ray structure of 25b was determined; hence the relative configuration at C_{2} of 23b is established. The nucleophile may attack preferentially from the re face (or si face if the other enantiomeric form of $\mathbf{1 4}$ is considered) of the carbon-nitrogen double bond of 14. The chelation intermediate $\mathbf{2 6}$ appears to prevail, and the transfer of the alkyl anion may occur from the less hindered face.

23b
68\%

24b

26
It is important to note that the diastereoselectivity shown in eq 9 was opposite to those summarized in

Figure 2. ORTEP of 25b. Thermal ellipsoids are shown in 30\% probability.

Tables 3 and 5. Furthermore, the reaction assisted by stilbene diol moiety $\mathbf{1 4}$ was much less selective than those using tunable diols 6 as the chiral auxiliary. By comparing $\mathbf{1 8}$ with 26, it is clear that the alkoxy side chain in $\mathbf{9}$ plays a pivotal role in directing the diastereoselective addition of organol ithium nucleophiles to the hydrazone moiety.

Conclusion

In summary, we have demonstrated another useful application of the tunable chiral auxiliary 6 in asymmetric synthesis. Our results show that the bulky alkoxy moiety in $\mathbf{9}$ may serve as an additional auxiliary ligand to form a chelating complex with the metal catalyst. The stereoselectivity of the nucleophilic addition reactions of alkyllithiums to 9 in aromatic hydrocarbon solvent is enhanced. The present results along with our earlier work ${ }^{11-13}$ suggest that the bulky alkoxy group of $\mathbf{8}$ has a demonstrated role as a chiral auxiliary in asymmetric synthesis. The selectivities in these reactions are higher than those in reactions employing simple methoxy or even benzyloxy auxiliaries 6. Further applications of 8 are under study.

Experimental Section

General Procedure for the Preparation of 4,5-Bis-(alkoxymethyl)-2-(2-phenylethenyl)dioxolane (8). A benzene solution of the α, β-unsaturated aldehyde or ketone (1 equiv), $\mathbf{7}$ (1 equiv), and PPTs ($1 \mathrm{~mol} \%$) was refluxed overnight, cooled, diluted with ether, washed with saturated NaHCO_{3} and brine, and dried $\left(\mathrm{MgSO}_{4}\right)$. The organic solution was evaporated in vacuoto give the residue which was chromatographed on silica gel (5\% EtOAc in hexane) to give 8.
4,5-Bis(isopropoxymethyl)-2-(2-phenylethenyl)dioxolane (8a): $90 \%:[\alpha]^{20} \mathrm{D}=+13.3$ (c 11.1, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 1.16(\mathrm{~d}, \mathrm{~J}=6.1 \mathrm{~Hz}, 12 \mathrm{H}), 3.51-3.70(\mathrm{~m}$, $6 \mathrm{H}), 3.98(\mathrm{dt}, \mathrm{J}=4.9,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.05(\mathrm{dt}, \mathrm{J}=6.4,6.5 \mathrm{~Hz}$, $1 \mathrm{H}), 5.56(\mathrm{~d}, \mathrm{~J}=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.16(\mathrm{dd}, \mathrm{J}=6.3,16.0 \mathrm{~Hz}, 1$ H), $6.74(\mathrm{~d}, \mathrm{~J}=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.21-7.34(\mathrm{~m}, 3 \mathrm{H}), 7.35-7.41$ (m, 2 H); ${ }^{13} \mathrm{C} N M R\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 21.9,22.0,68.5,68.8$, 72.3, 72.3, 77.4, 78.5, 104.2, 125.4, 126.9, 128.2, 128.5, 135.1, 135.8; HRMS calcd for $\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{O}_{4} 320.1988$, found 320.1988.

4,5-Bis(tert-butoxymethyl)-2-(2-phenylethenyl)dioxolane (8b): $86 \% ; \mathrm{mp} 43-44{ }^{\circ} \mathrm{C} ;\left[\alpha{ }^{27} \mathrm{D}=+15.6\right.$ (c 2.1, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 1.22(\mathrm{~s}, 18 \mathrm{H}), 3.46-3.63(\mathrm{~m}, 4$ H), 3.93 (dt, J $=5.1,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.00(\mathrm{q}, \mathrm{J}=6.5 \mathrm{~Hz}, 1 \mathrm{H})$, $5.55(\mathrm{~d}, \mathrm{~J}=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.16$ (dd, J $=6.1,16.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.73$ (d, J $=16.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.18-7.32(\mathrm{~m}, 3 \mathrm{H}), 7.33-7.40(\mathrm{~m}, 2 \mathrm{H})$;
${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 27.4,62.6,63.0,73.1,73.2,78.4$, 79.1, 104.1, 125.6, 126.9, 128.2, 128.4, 134.9, 135.9; HRMS cal cd for $\mathrm{C}_{21} \mathrm{H}_{32} \mathrm{O}_{4} 348.2301$, found 348.2304 .

4,5-Bis(thexyloxymethyl)-2-(2-phenylethenyl)dioxolane (8c): 83%; $[\alpha]^{25}{ }_{\mathrm{D}}=+16.8$ (c 3.8, CHCl_{3}); ${ }^{1} \mathrm{H} \mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 0.86(\mathrm{~d}, \mathrm{~J}=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.87(\mathrm{~d}, \mathrm{~J}=6.7$ $\mathrm{Hz}, 3 \mathrm{H}), 0.88(\mathrm{~d}, \mathrm{~J}=6.7 \mathrm{~Hz}, 6 \mathrm{H}), 1.08(\mathrm{~s}, 12 \mathrm{H}), 1.78$ (septet, $\mathrm{J}=6.7 \mathrm{~Hz}, 1 \mathrm{H}$), 1.79 (septet, J $=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.41-3.60(\mathrm{~m}$, $4 \mathrm{H}), 3.97(\mathrm{dt}, \mathrm{J}=4.6,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.05(\mathrm{q}, \mathrm{J}=6.4 \mathrm{~Hz}, 1 \mathrm{H})$, 5.55 (d, J $=6.2 \mathrm{~Hz}, 1 \mathrm{H}$), 6.15 (dd, J $=6.2,15.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.73$ $(\mathrm{d}, \mathrm{J}=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.21-7.32(\mathrm{~m}, 3 \mathrm{H}), 7.34-7.40(\mathrm{~m}, 2 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 17.5,17.5,22.0,22.1,35.7,35.9$, $61.9,62.3,77.5,78.7,78.9,104.2,125.8,126.9,128.2,128.5$, 134.9, 136.0; HRMS calcd for $\mathrm{C}_{25} \mathrm{H}_{40} \mathrm{O}_{4}$ 404.2927, found 404.2922.

4,5-Bis(isopropoxymethyl)-2-methyl-2-(2-phenylethenyl)dioxolane (8d): 81\%; [$\alpha]^{24} \mathrm{D}=+2.2$ (c 10.0, CHCl_{3}); ${ }^{1 \mathrm{H}}$ NMR ($\left.\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right) \delta 1.13(\mathrm{~d}, \mathrm{~J}=6.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.14(\mathrm{~d}, \mathrm{~J}$ $=6.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.16(\mathrm{~d}, \mathrm{~J}=6.1 \mathrm{~Hz}, 6 \mathrm{H}), 1.56(\mathrm{~s}, 3 \mathrm{H}), 3.39-$ $3.76(\mathrm{~m}, 6 \mathrm{H}), 3.90-4.02(\mathrm{~m}, 2 \mathrm{H}), 6.24(\mathrm{~d}, \mathrm{~J}=16.0 \mathrm{~Hz}, 1 \mathrm{H})$, 6.72 (d, J $=16.0 \mathrm{~Hz}, 1 \mathrm{H}$), 7.15-7.44 (m, 5 H); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right) \delta 21.8,21.9,26.3,68.7,69.0,72.0,72.2,78.3$, 78.4, 108.4, 126.6, 127.7, 128.4, 129.2, 131.3, 136.3; HRMS calcd for $\mathrm{C}_{20} \mathrm{H}_{30} \mathrm{O}_{4} 334.2144$, found 334.2147.

4,5-Bis(tert-butoxymethyl)-2-methyl-2-(2-phenylethenyl)dioxolane (8e): 85%; $[\alpha]^{27} \mathrm{D}=+2.1$ (c 5.0, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 1.16(\mathrm{~s}, 9 \mathrm{H}), 1.18(\mathrm{~s}, 9 \mathrm{H}), 1.55(\mathrm{~s}$, $3 \mathrm{H}), 3.47-3.58(\mathrm{~m}, 4 \mathrm{H}), 3.86-3.92(\mathrm{~m}, 2 \mathrm{H}), 6.25(\mathrm{~d}, \mathrm{~J}=$ $16.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.72(\mathrm{~d}, \mathrm{~J}=16.1,1 \mathrm{H}), 7.18-7.41(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (CDCl $3,75 \mathrm{MHz}) \delta 26.4,27.4,63.0,63.3,73.1,73.2,78.7$, 79.3, 108.4, 126.7, 127.7, 128.5, 129.2, 131.5, 136.4; HRMS cal cd for $\mathrm{C}_{22} \mathrm{H}_{34} \mathrm{O}_{4} 362.2457$, found 362.2448 .

4,5-Bis(thexyloxymethyl)-2-methyl-2-(2-phenylethenyl)dioxolane (8f): 85\%; $[\alpha]^{27}{ }^{2}$ D $=+5.7$ (c 3.8, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 0.84(\mathrm{~d}, \mathrm{~J}=6.4 \mathrm{~Hz}, 6 \mathrm{H}), 0.86(\mathrm{~d}, \mathrm{~J}=6.4$ Hz, 6 H), 1.06 (s, 6 H$), 1.08$ (s, 6 H), 1.55 (s, 3 H), 1.77 (septet, $\mathrm{J}=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.78$ (septet, J $=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.37-3.62(\mathrm{~m}$, $4 \mathrm{H}), 3.88-4.01(\mathrm{~m}, 2 \mathrm{H}), 6.25(\mathrm{~d}, \mathrm{~J}=16.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.73$ (d , $\mathrm{J}=16.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.16-7.44(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 75\right.$ MHz) $\delta 17.5,17.5,21.9,22.0,22.0,22.1,26.4,35.3,35.6,62.1$, $62.4,78.7,79.4,108.2,126.7,127.7,128.5,129.2,131.6,136.5 ;$ HRMS calcd for $\mathrm{C}_{26} \mathrm{H}_{42} \mathrm{O}_{4}$ 418.3083, found 418.3089.

General Procedure for the Preparation of 4,5-Bis-(alkoxymethyl)-2-formyldioxolane N,N-Dimethylhydrazone (9). A methanolic solution (250 mL) of $8(33 \mathrm{mmol})$ at $-78{ }^{\circ} \mathrm{C}$ was bubbled with ozone. The mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for $8-12 \mathrm{~h}$ and quenched by the dropwise addition of $\mathrm{Me}_{2} \mathrm{~S}(0.10 \mathrm{~mol})$. After the reaction was warmed to room temperature, the solvent was evaporated in vacuo to give the residue to which was added $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$, $\mathrm{PPTs}(1.0 \mathrm{mmol})$, and $\mathrm{H}_{2} \mathrm{NNMe}_{2}(70 \mathrm{mmol})$. The mixture was then stirred at $r t$ for $4-6 \mathrm{~h}$, quenched with $\mathrm{K}_{2} \mathrm{CO}_{3}$, filtered, evaporated, and purified by chromatography.

4,5-Bis(isopropoxymethyl)-2-formyldioxolane $\mathbf{N}, \mathbf{N}-\mathrm{Di}-$ methylhydrazone (9a): 88%; $[\alpha]^{27} \mathrm{D}=+0.8$ (c 4.5, CHCl_{3}); IR (neat) $v 1666 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.12$ (d, J $=6.1 \mathrm{~Hz}, 6 \mathrm{H}), 1.14(\mathrm{~d}, \mathrm{~J}=6.0 \mathrm{~Hz}, 6 \mathrm{H}), 2.81(\mathrm{~s}, 6 \mathrm{H}), 3.45-$ $3.67(\mathrm{~m}, 6 \mathrm{H}), 3.90-4.02(\mathrm{~m}, 2 \mathrm{H}), 5.40(\mathrm{~d}, \mathrm{~J}=6.3 \mathrm{~Hz}, 1 \mathrm{H})$, $6.28(\mathrm{~d}, \mathrm{~J}=6.3 \mathrm{~Hz}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 21.8$, 21.8, 42.0, 68.3, 68.6, 72.0, 72.1, 77.7, 78.3, 103.6, 128.7; HRMS calcd for $\mathrm{C}_{14} \mathrm{H}_{28} \mathrm{O}_{4} \mathrm{~N}_{2}$ 288.2049, found 288.2049.

4,5-Bis(tert-butoxymethyl)-2-formyldioxolane \mathbf{N}, N-Dimethylhydrazone (9b); 95\%; $[\alpha]^{27}{ }_{\mathrm{D}}=+7.9$ (c 2.8, CHCl_{3}); IR (neat) $v 1600 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.15$ (s, 9 H), 1.16 (s, 9 H), 2.80, ($\mathrm{s}, 6 \mathrm{H}$), 3.38-3.57 (m, 4 H), 3.84-3.95 $(\mathrm{m}, 2 \mathrm{H}), 5.39(\mathrm{~d}, \mathrm{~J}=6.0 \mathrm{~Hz} ; 1 \mathrm{H}), 6.27(\mathrm{~d}, \mathrm{~J}=6.0 \mathrm{~Hz}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz} \mathrm{CDCl}_{3}$) $\delta 27.4,42.2,62.6,63.0,73.1,73.2$, 78.3, 79.0, 103.6, 129.1; HRMS cal cd for $\mathrm{C}_{16} \mathrm{H}_{32} \mathrm{O}_{4} \mathrm{~N}_{2} 316.2362$, found 316.2354.

4,5-Bis(thexyloxymethyl)-2-formyldioxolane N,N-Dimethylhydrazone (9c): 95\%; [$\alpha]^{24} \mathrm{D}=+10.9$ (c 2.9, CHCl_{3}); IR (neat) $v 1601 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz} \mathrm{CDCl}_{3}$) $\delta 0.83$ (d, J $=6.8 \mathrm{~Hz}, 12 \mathrm{H}), 1.03(\mathrm{~s}, 6 \mathrm{H}), 1.04(\mathrm{~s}, 6 \mathrm{H}), 1.74$ (septet, J = $6.8 \mathrm{~Hz}, 1 \mathrm{H}$), 1.75 (septet, J $=6.8 \mathrm{~Hz}, 1 \mathrm{H}$), $2.80(\mathrm{~s}, 6 \mathrm{H}), 3.37-$ $3.58(\mathrm{~m}, 4 \mathrm{H}), 3.90-4.02(\mathrm{~m}, 2 \mathrm{H}), 5.38(\mathrm{~d}, \mathrm{~J}=6.0 \mathrm{~Hz}, 1 \mathrm{H})$,
$6.27(\mathrm{~d}, \mathrm{~J}=6.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 17.4$, 17.5, 21.9, 22.0, 35.7, 35.7, 42.2, 61.7, 62.1, 77.3, 77.4, 78.5, 78.7, 103.6, 129.3; HRMS calcd for $\mathrm{C}_{20} \mathrm{H}_{40} \mathrm{O}_{4} \mathrm{~N}_{2} 372.2988$, found 372.2995.

4,5-Bis(isopropoxymethyl)-2-formyl-2-methyldioxolane N,N-Dimethylhydrazone (9d): 75\%; $[\alpha]^{27}{ }_{\mathrm{D}}=+5.8$ (c 4.6, CHCl_{3}); IR (neat) $v 1617 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.11(\mathrm{~d}, \mathrm{~J}=6.0 \mathrm{~Hz}, 12 \mathrm{H}), 1.52(\mathrm{~s}, 3 \mathrm{H}), 2.74(\mathrm{~s}, 6 \mathrm{H}), 3.46-$ $3.64(\mathrm{~m}, 6 \mathrm{H}), 3.90-4.01(\mathrm{~m}, 2 \mathrm{H}), 6.45(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 21.8,21.9,23.7,42.5,68.7,68.8,72.1,72.2$, 78.3, 78.3, 108.3, 134.5; HRMS calcd for $\mathrm{C}_{15} \mathrm{H}_{30} \mathrm{O}_{4} \mathrm{~N}_{2}$ 302.2206, found 302.2206 .

4,5-Bis(tert-butoxymethyl)-2-formyl-2-methyldioxolane \mathbf{N},N-Dimethylhydrazone (9e): 70\%; $[\alpha]^{25} \mathrm{D}=+9.7$ (c $0.3, \mathrm{CHCl}_{3}$); IR (neat) $v 1601 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.17(\mathrm{~s}, 18 \mathrm{H}), 1.55(\mathrm{~s}, 3 \mathrm{H}), 2.76,(\mathrm{~s}, 6 \mathrm{H}), 3.42-3.59(\mathrm{~m}, 4$ $\mathrm{H}), 3.88-4.00(\mathrm{~m}, 2 \mathrm{H}), 6.49(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 23.5,27.3,42.4,62.9,63.1,72.9,72.9,78.5,78.9,108.1,134.6 ;$ HRMS calcd for $\mathrm{C}_{17} \mathrm{H}_{34} \mathrm{O}_{4} \mathrm{~N}_{2} 330.2519$, found 330.2504 .
4,5-B is(thexyloxymethyl)-2-formyl-2-methyldioxolane \mathbf{N}, \mathbf{N}-Dimethylhydrazone (9f): $88 \% ;[\alpha]^{27} \mathrm{D}=+7.4$ (c 2.7, CHCl_{3}); IR (neat) $v 1603 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.83(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 12 \mathrm{H}), 1.05(\mathrm{~s}, 12 \mathrm{H}), 1.53(\mathrm{~s}, 3 \mathrm{H}), 1.77$ (septet, J $=6.8 \mathrm{~Hz}, 2 \mathrm{H}$), $2.75(\mathrm{~s}, 6 \mathrm{H}), 3.38-3.57(\mathrm{~m}, 4 \mathrm{H})$, 3.90-4.01 (m, 2 H), 6.47 (s, 1 H); ${ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 17.4,17.5,21.9,22.0,23.7,35.5,42.5,62.0,62.2,77.3,77.4$, 78.8, 78.9, 108.1, 135.0; HRMS calcd for $\mathrm{C}_{21} \mathrm{H}_{42} \mathrm{O}_{4} \mathrm{~N}_{2}$ 386.3145, found 386.3145 .
dl-4,5-Diphenyl-2-formyldioxolane N,N-Dimethylhydrazone (di-14). According to the general procedure for the preparation of 9, a solution of acetal trans-4,5-di phenyl-2-(2-phenylethenyl)-1,3-dioxolane ${ }^{18}$ ($6.56 \mathrm{~g}, 20 \mathrm{mmol}$) in MeOH (250 mL) was treated at $-78{ }^{\circ} \mathrm{C}$ with ozone and was quenched with $\mathrm{Me}_{2} \mathrm{~S}(3.10 \mathrm{~g}, 0.05 \mathrm{~mol})$ to give the residue, which was allowed to react with $\mathrm{H}_{2} \mathrm{NNMe}_{2}(2.70 \mathrm{~g}, 45 \mathrm{mmol})$ in the presence of PPTs ($0.25 \mathrm{~g}, 1.0 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (50 mL) to give dl- $\mathbf{1 4}$ (3.49 g, 59\%): mp 94-96 ${ }^{\circ} \mathrm{C}$; IR (KBr) $v 1595 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (200 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.93(\mathrm{~s}, 6 \mathrm{H}), 4.81(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.84(\mathrm{~d}$, $\mathrm{J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.89(\mathrm{~d}, \mathrm{~J}=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.55(\mathrm{~d}, \mathrm{~J}=6.2 \mathrm{~Hz}$, $1 \mathrm{H}), 7.21-7.35(\mathrm{~m}, 10 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($\left.50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 42.3$, 84.9, 86.5, 104.6, 126.3, 126.8, 128.1, 128.3, 128.4, 128.5, 136.7, 138.2; HRMS calcd for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{2} \mathrm{~N}_{2}$ 296.1525, found 296.1523.

General Procedure for the Addition of Alkyllithium to 9. To a solution of hydrazone (1.0 mmol) in toluene or other solvent (50 mL) at $-78^{\circ} \mathrm{C}$ was added alkyllithium dropwise via syringe. The reaction mixture was stirred at $-78^{\circ} \mathrm{C}$ for $4-16 \mathrm{~h}$ and quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ at $-78^{\circ} \mathrm{C}$. The reaction mixture was allowed to warm to rt and filtered through a short column of silica gel. After removal of the sol vent in vacuo, the residue was subjected to ${ }^{1} \mathrm{H}$ NMR analysis to determine diastereoselectivity. The crude mixture was then chromatographed on silica gel (10% EtOAc in hexane with 2% $\mathrm{Et}_{3} \mathrm{~N}$) to afford purified diastereomeric product 15.

15a ($88 \%, 2 \mathrm{~S} / 2 \mathrm{R}=91 / 9$); (2S)-15a: $\left[\alpha{ }^{24} \mathrm{~d}=+1.9\right.$ (c 11.0, CHCl_{3}); IR (neat) $v 3390 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 1.05 (d, J $=6.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.11(\mathrm{~d}, \mathrm{~J}=5.9 \mathrm{~Hz}, 6 \mathrm{H}), 1.13(\mathrm{~d}, \mathrm{~J}$ $=5.9 \mathrm{~Hz}, 6 \mathrm{H}), 1.90-2.10(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.38(\mathrm{~s}, 6 \mathrm{H}), 2.95(\mathrm{dq}, \mathrm{J}$ $=4.2,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.42-3.65(\mathrm{~m}, 6 \mathrm{H}), 3.84(\mathrm{dt}, \mathrm{J}=5.0,6.6$ $\mathrm{Hz}, 1 \mathrm{H}), 3.95(\mathrm{dt}, \mathrm{J}=5.3,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.95(\mathrm{~d}, \mathrm{~J}=4.2 \mathrm{~Hz}$, $1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 14.0,21.9,22.0,48.1,55.2$, 68.3, 68.6, 72.1, 72.2, 77.6, 78.6, 105.1; HRMS calcd for $\mathrm{C}_{15} \mathrm{H}_{32} \mathrm{O}_{4} \mathrm{~N}_{2} 304.2362$, found 304.2355 .

15b $\left(75 \%, 2 \mathrm{~S} / 2 \mathrm{R}=89 / 11\right.$); (2S)-15b: $[\alpha]^{24}{ }_{\mathrm{D}}=-11.3$ (c 5.6, CHCl_{3}); IR (neat) $v 3392 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $0.88(\mathrm{t}, \mathrm{J}=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.14(\mathrm{~d}, \mathrm{~J}=5.6 \mathrm{~Hz}, 6 \mathrm{H}), 1.15(\mathrm{~d}, \mathrm{~J}$ $=6.0 \mathrm{~Hz}, 6 \mathrm{H}), 1.25-1.48(\mathrm{~m}, 5 \mathrm{H}), 1.49-1.64(\mathrm{~m}, 1 \mathrm{H}), 1.70-$ 1.95 (br s, 1 H), $2.40(\mathrm{~s}, 6 \mathrm{H}), 2.71-2.86(\mathrm{~m}, 1 \mathrm{H}), 3.47-3.67$ $(\mathrm{m}, 6 \mathrm{H}), 3.86(\mathrm{dt}, \mathrm{J}=5.1,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.97(\mathrm{dt}, \mathrm{J}=5.2,6.5$ $\mathrm{Hz}, 1 \mathrm{H}), 5.08(\mathrm{~d}, \mathrm{~J}=3.1 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 14.1, 21.9, 22.0, 23.1, 28.2, 28.4, 48.1, 59.6, 68.4, 68.6, 72.2, 72.3, 77.5, 78.6, 104.5; HRMS calcd for $\mathrm{C}_{18} \mathrm{H}_{38} \mathrm{O}_{4} \mathrm{~N}_{2}$ 346.2832, found 346.2858 .

[^4] Aust. J. Chem. 1993, 46, 995.

15c $\left(71 \%, 2 \mathrm{~S} / 2 \mathrm{R}=98 / 2\right.$); (2S)-15c: $[\alpha]^{26} \mathrm{D}=+16.2$ (c 5.1, CHCl_{3}); IR (neat) $v 3481 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $1.08(\mathrm{~d}, \mathrm{~J}=6.0 \mathrm{~Hz}, 6 \mathrm{H}), 1.13(\mathrm{~d}, \mathrm{~J}=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.14(\mathrm{~d}, \mathrm{~J}$ $=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.60-1.95(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.40(\mathrm{~s}, 6 \mathrm{H}), 3.36-3.63$ $(\mathrm{m}, 6 \mathrm{H}), 3.76(\mathrm{q}, \mathrm{J}=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.92(\mathrm{q}, \mathrm{J}=5.7 \mathrm{~Hz}, 1 \mathrm{H})$, $3.98(\mathrm{~d}, \mathrm{~J}=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.11(\mathrm{~d}, \mathrm{~J}=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.18-7.35$ (m, 3 H), 7.36-7.44 (m, 2 H); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 21.8, 21.9, 22.0, 47.8, 65.0, 68.1, 68.5, 72.1, 72.2, 77.6, 78.5, 105.3, 127.3, 127.9, 128.5, 139.2; HRMS calcd for $\mathrm{C}_{20} \mathrm{H}_{34} \mathrm{O}_{4} \mathrm{~N}_{2}$ 366.2519, found 366.2508.

15d $(90 \%, 2 \mathrm{~S} / 2 \mathrm{R}=95 / 5)$; $(2 \mathrm{~S})$-15d: $[\alpha]_{\mathrm{D}}{ }^{20}=+0.2$ (c 11.2, CHCl_{3}); IR (neat) $v 3400 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 1.06 (d, J $=6.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.16(\mathrm{~s}, 9 \mathrm{H}), 1.17(\mathrm{~s}, 9 \mathrm{H}), 2.68-2.90$ (br s, 1 H), 2.39 (s, 6 H), 2.96 (dq, J $=4.2,6.2 \mathrm{~Hz}, 1 \mathrm{H}$), 3.35$3.56(\mathrm{~m}, 4 \mathrm{H}), 3.80(\mathrm{q}, \mathrm{J}=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\mathrm{q}, \mathrm{J}=5.8 \mathrm{~Hz}, 1$ $\mathrm{H}), 4.95(\mathrm{~d}, \mathrm{~J}=4.2 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 14.2, 27.4, 48.0, 55.2, 62.5, 63.7, 73.2, 73.2, 78.0, 79.3, 105.0; HRMS calcd for $\mathrm{C}_{17} \mathrm{H}_{36} \mathrm{O}_{4} \mathrm{~N}_{2} 332.2675$, found 332.2672.

15e ($83 \%, 2 \mathrm{~S} / 2 \mathrm{R}=92 / 8$); (2S)-15e: $[\alpha]^{24} \mathrm{D}=-13.4$ (с 6.5, CHCl_{3}); IR (neat) $v 3481 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 0.86 (t, J $=6.5 \mathrm{~Hz}, 3 \mathrm{H}$), 1.14 ($\mathrm{s}, 9 \mathrm{H}$), 1.16 (s, 9 H$), 1.17-1.62$ (m, 6 H), 2.29-2.40 (br s, 1 H), $2.38(\mathrm{~s}, 6 \mathrm{H}), 2.71-2.80(\mathrm{~m}, 1$ H), 3.35-3.55 (m, 4 H), 3.79 (dt, J $=5.1,6.5 \mathrm{~Hz}, 1 \mathrm{H}$), 3.89 ($\mathrm{dt}, \mathrm{J}=5.3,6.5 \mathrm{~Hz}, 1 \mathrm{H}$), $5.06(\mathrm{~d}, \mathrm{~J}=3.2 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 14.1, 23.1, 27.4, 27.4, 28.2, 28.4, 48.1, 59.6, 62.6, 62.9, 73.2, 79.1, 81.9, 104.4; HRMS cal cd for $\mathrm{C}_{20} \mathrm{H}_{42} \mathrm{O}_{4} \mathrm{~N}_{2}$ 374.3145, found 374.3147. (2R)-15e: ${ }^{1} \mathrm{H}$ NMR (200 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 0.84(\mathrm{t}, \mathrm{J}=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.13(\mathrm{~s}, 9 \mathrm{H}), 1.14(\mathrm{~s}, 9 \mathrm{H})$, 1.15-1.65 (m, 6H), 2.29-2.39 (br s, 1 H), 2.37 (s, 6 H), 2.71$2.80(\mathrm{~m}, 1 \mathrm{H}), 3.35-3.52(\mathrm{~m}, 4 \mathrm{H}), 3.83(\mathrm{dt}, \mathrm{J}=5.0,6.3 \mathrm{~Hz}, 1$ $\mathrm{H}), 3.88(\mathrm{dt}, \mathrm{J}=5.1,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.02(\mathrm{~d}, \mathrm{~J}=3.2 \mathrm{~Hz}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 14.0,23.0,27.4,27.4,28.3,28.7$, 48.1, 59.5, 62.6, 62.7, 73.1, 77.9, 78.7, 104.3.
$15 f(85 \%, 2 S / 2 R=98 / 2)$; (2S)-15f: $[\alpha]^{26} \mathrm{D}=+17.0$ (c 5.4, CHCl_{3}); IR (neat) $v 3478 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $1.10(\mathrm{~s}, 9 \mathrm{H}), 1.16(\mathrm{~s}, 9 \mathrm{H}), 1.55-1.79(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.40(\mathrm{~s}, 6 \mathrm{H})$, $3.24-3.48(\mathrm{~m}, 4 \mathrm{H}), 3.71(\mathrm{q}, \mathrm{J}=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{q}, \mathrm{J}=5.7$ $\mathrm{Hz}, 1 \mathrm{H}), 3.99(\mathrm{~d}, \mathrm{~J}=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.10(\mathrm{~d}, \mathrm{~J}=4.4 \mathrm{~Hz}, 1 \mathrm{H})$, 7.21-7.45 (m,5 H); ${ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 27.4,27.5$, 47.9, 62.4, 62.9, 65.0, 73.2, 78.0, 79.1, 105.3, 127.4, 127.9, 128.6, 139.4; HRMS cal cd for $\mathrm{C}_{22} \mathrm{H}_{38} \mathrm{O}_{4} \mathrm{~N}_{2}$ 394.2832, found 394.2838.

15g (86\%, $2 \mathrm{~S} / 2 \mathrm{R}=91 / 9$); (2S)-15g: $[\alpha]^{25} \mathrm{D}=-0.8$ (c 3.8, CHCl_{3}); IR (neat) $v 3443 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta$ 0.83 (d, J $=6.7 \mathrm{~Hz}, 9 \mathrm{H}$), $0.84(\mathrm{~d}, \mathrm{~J}=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.01-1.07$ $[(\mathrm{m}, 15 \mathrm{H})$, embodied a singlet at $\delta 1.04(\mathrm{~s}, 6 \mathrm{H})$, a singlet at $\delta 1.06(\mathrm{~s}, 6 \mathrm{H})$], 1.73 (septet, J $=6.7 \mathrm{~Hz}, 1 \mathrm{H}$), 1.75 (septet, J $=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.00-2.20(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.38(\mathrm{~s}, 6 \mathrm{H}), 2.93(\mathrm{dq}, \mathrm{J}$ $=4.2,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.33-3.51(\mathrm{~m}, 4 \mathrm{H}), 3.83(\mathrm{q}, \mathrm{J}=5.7 \mathrm{~Hz}, 1$ $\mathrm{H}), 3.95(\mathrm{q}, \mathrm{J}=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.93(\mathrm{~d}, \mathrm{~J}=4.2 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 50 \mathrm{MHz}$) $\delta 14.1,17.4,17.5,17.5,21.9,22.0,22.1$, $35.6,35.8,48.2,55.4,61.7,62.2,77.3,78.1,79.0,105.0$; HRMS cal cd for $\mathrm{C}_{21} \mathrm{H}_{44} \mathrm{O}_{4} \mathrm{~N}_{2} 388.3301$, found 388.3301 .

15h (73\%, 2S/2R = 92/8); (2S)-15h: $[\alpha]^{24} \mathrm{D}=-10.6$ (c 9.9, CHCl_{3}); IR (neat) $v 3481 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta$ 0.83 (d, J $=6.7 \mathrm{~Hz}, 12 \mathrm{H}$), $0.86(\mathrm{t}, \mathrm{J}=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.03(\mathrm{~s}, 6$ H), 1.05 (s, 6H), 1.20-1.61 (m, 7 H), 1.73 (septet, J $=6.7 \mathrm{~Hz}$, 1 H), 1.75 (septet, J $=6.7 \mathrm{~Hz}, 1 \mathrm{H}$), 2.38 (s, 6 H), 2.71-2.79 $(\mathrm{m}, 1 \mathrm{H}), 3.36-3.50(\mathrm{~m}, 4 \mathrm{H}), 3.83(\mathrm{q}, \mathrm{J}=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.95$ $(q, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.05(\mathrm{~d}, \mathrm{~J}=3.3 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(CDCl}_{3}$, 75 MHz) δ 14.1, 17.4, 17.5, 17.5, 21.9, 22.0, 23.1, 28.2, 28.4, $35.6,35.8,48.1,59.7,61.8,62.0,77.3,77.4,78.0,78.7,104.3 ;$ HRMS calcd for $\mathrm{C}_{24} \mathrm{H}_{50} \mathrm{O}_{4} \mathrm{~N}_{2} 430.3771$, found 430.3772 .

15i $\left(70 \%, 2 \mathrm{~S} / 2 \mathrm{R}=98 / 2\right.$); (2S)-15i: $[\alpha]^{26} \mathrm{D}=+5.4$ (c 5.3 , CHCl_{3}); IR (neat) $v 3337 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta$ 0.79 (d, J $=7.0 \mathrm{~Hz}, 6 \mathrm{H}$), 0.85 (d, J $=7.0 \mathrm{~Hz}, 3 \mathrm{H}$), 0.86 (d, J $=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.99(\mathrm{~s}, 6 \mathrm{H}), 1.04(\mathrm{~s}, 6 \mathrm{H}), 1.73$ (septet, J $=6.7$ $\mathrm{Hz}, 1 \mathrm{H}), 1.75$ (septet, J $=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.62-1.80(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$, $2.40(\mathrm{~s}, 6 \mathrm{H}), 3.26(\mathrm{dd}, \mathrm{J}=5.6,9.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.32(\mathrm{dd}, \mathrm{J}=5.2$, $9.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.33(\mathrm{dd}, \mathrm{J}=5.6,9.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.39(\mathrm{dd}, \mathrm{J}=5.0$, $9.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{dt}, \mathrm{J}=5.0,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\mathrm{dt}, \mathrm{J}=5.2$, $5.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.96(\mathrm{~d}, \mathrm{~J}=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.08(\mathrm{~d}, \mathrm{~J}=4.7 \mathrm{~Hz}, 1$ H), 7.18-7.33 (m, 3H), 7.37-7.44 (m, 2 H); ${ }^{13} \mathrm{C}$ NMR (CDCl ${ }_{3}$, 75 MHz) $\delta 17.4,17.4,17.5,21.9,21.9,22.0,22.1,35.5,35.8$,
47.9, 61.6, 62.1, 65.1, 77.4, 77.4, 78.0, 79.0, 105.3, 127.3, 127.9, 128.5, 139.4; HRMS calcd for $\mathrm{C}_{26} \mathrm{H}_{46} \mathrm{O}_{4} \mathrm{~N}_{2}$ 450.3458, found 450.3463.

15j (84\%, 2S/2R >99/1); (2S)-15j: $[\alpha]^{25}{ }_{\mathrm{D}}=+38.3$ (c 3.6, CHCl_{3}); IR (neat) $v 3441 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 1.06 (d, J $=6.4 \mathrm{~Hz}, 3 \mathrm{H}$), 1.12 (d, J $=6.2 \mathrm{~Hz}, 6 \mathrm{H}$), 1.13 (d, J $=6.2 \mathrm{~Hz}, 6 \mathrm{H}), 1.30(\mathrm{~s}, 3 \mathrm{H}), 1.85-2.20(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.37(\mathrm{~s}, 6$ $\mathrm{H}), 2.88(\mathrm{q}, \mathrm{J}=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.39-3.63(\mathrm{~m}, 6 \mathrm{H}), 3.86(\mathrm{dt}, \mathrm{J}=$ $5.0,8.1 \mathrm{~Hz}, 1 \mathrm{H}$), 3.97 (dt, J $=5.0,8.1 \mathrm{~Hz}, 1 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR (75 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 15.3,21.1,21.8,21.9,47.9,59.2,68.7,68.7$, 72.1, 72.1, 78.2, 111.6; HRMS calcd for $\mathrm{C}_{16} \mathrm{H}_{34} \mathrm{O}_{4} \mathrm{~N}_{2}$ 318.2519, found 318.2524.
15k $(68 \%, 2 \mathrm{~S} / 2 \mathrm{R}=98 / 2) ;(2 \mathrm{~S})-15 \mathbf{k}:[\alpha]^{28}{ }_{\mathrm{D}}=+8.1$ (c 9.4, CHCl_{3}); IR (neat) $v 3446 \mathrm{~cm}^{-1 ;} ; \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 0.86 (t, J $=7.1 \mathrm{~Hz}, 3 \mathrm{H}$), 1.11 (d, J $=6.3 \mathrm{~Hz}, 6 \mathrm{H}$), 1.12 (d, J $=5.8 \mathrm{~Hz}, 6 \mathrm{H}), 1.20-1.59[(\mathrm{~m}, 9 \mathrm{H})$, embodied a singlet at δ 1.32 (s, 3 H)], 2.10-2.28 (br s, 1 H), 2.36 (s, 6 H), 2.68 (dd, J $=4.5,6.5 \mathrm{~Hz}, 1 \mathrm{H}$), $3.45-3.63(\mathrm{~m}, 6 \mathrm{H}), 3.83(\mathrm{dt}$, J $=5.0,8.2$ $\mathrm{Hz}, 1 \mathrm{H}$), 3.98 (ddd, J $=3.9,5.2,8.2 \mathrm{~Hz}, 1 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR (75 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 14.1,21.9,22.0,22.2,23.2,29.4,30.1,47.9$, 64.1, 68.7, 68.8, 72.1, 72.2, 78.0, 78.2, 112.0; HRMS calcd for $\mathrm{C}_{19} \mathrm{H}_{40} \mathrm{O}_{4} \mathrm{~N}_{2} 360.2988$, found 360.2979 .
$15 \mathrm{I}(82 \%, 2 \mathrm{~S} / 2 \mathrm{R}>99 / 1)$; (2S)-15I: $[\alpha]^{23}{ }_{\mathrm{D}}=+29.2$ (c 18.9, CHCl_{3}); IR (neat) $v 3438 \mathrm{~cm}^{-1}$; 1 H NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 1.05 (d, J $=6.3 \mathrm{~Hz}, 3 \mathrm{H}$), $1.14(\mathrm{~s}, 9 \mathrm{H}), 1.15(\mathrm{~s}, 9 \mathrm{H}), 1.28(\mathrm{~s}, 3$ H), 2.29-2.35 (br s, 1 H), $2.36(\mathrm{~s}, 6 \mathrm{H}), 2.86(\mathrm{q}, \mathrm{J}=6.3 \mathrm{~Hz}, 1$ H), 3.39-3.56 (m, 4 H), 3.81 (dt, J = 5.3, $8.1 \mathrm{~Hz}, 1 \mathrm{H}$), 3.91 (dt, J $=5.2,8.1 \mathrm{~Hz}, 1 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 15.3$, 21.2, 27.3, 27.3, 47.9, 59.2, 62.9, 63.0, 72.9, 78.4, 78.9, 111.4; HRMS calcd for $\mathrm{C}_{18} \mathrm{H}_{38} \mathrm{O}_{4} \mathrm{~N}_{2}$ 346.2832, found 346.2832.

15m ($70 \%, 2 \mathrm{~S} / 2 \mathrm{R}=98 / 2$); (2S)-15m: $[\alpha]^{27} \mathrm{D}=+8.9$ (c 2.2, CHCl_{3}); IR (neat) $v 3435 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 0.86 (t, J $=6.9 \mathrm{~Hz}, 3 \mathrm{H}$), 1.13 (s, 9 H), 1.15 (s, 9 H), 1.18-1.60 [$(\mathrm{m}, 9 \mathrm{H})$, embodied a singlet at $\delta 1.32(\mathrm{~s}, 3 \mathrm{H})], 2.15-2.30$ (br $\mathrm{s}, 1 \mathrm{H}$), 2.36 ($\mathrm{s}, 6 \mathrm{H}$), 2.68 (dd, J $=4.6,6.5 \mathrm{~Hz}, 1 \mathrm{H}$), $3.36-3.58$ (m, 4 H$), 3.79$ (ddd, J $=4.8,5.9,8.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.93$ (ddd, J $=$ $4.8,5.9,8.3 \mathrm{~Hz}, 1 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 14.1,22.3$, 23.2, 27.4, 27.4, 29.4, 30.1, 47.9, 62.9, 63.1, 64.1, 73.0, 73.1, 78.2, 79.0, 111.9; HRMS calcd for $\mathrm{C}_{21} \mathrm{H}_{44} \mathrm{O}_{4} \mathrm{~N}_{2} 388.3301$, found 388.3304.

23b (79\%, de 56\%); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.98$ (t, J $=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.34-1.85(\mathrm{~m}, 7 \mathrm{H}), 2.48(\mathrm{~s}, 6 \mathrm{H}), 3.02-3.15$ $(\mathrm{m}, 1 \mathrm{H}), 4.70(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.74(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 1 \mathrm{H})$, 5.51 (d, J $=3.9 \mathrm{~Hz}, 1 \mathrm{H}$), 7.18-7.35 (m, 10 H); ${ }^{13} \mathrm{C}$ NMR (75 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 14.1,23.1,28.1,28.3,48.2,60.3,85.0,86.9$, 105.6, 126.4, 126.8, 128.1, 128.4, 128.5, 139.6.

General Procedure for the Reductive Cleavage of the $\mathbf{N}-\mathbf{N}$ bond of 15. A mixture of hydrazine (1.0 mmol) and excess W2 Raney nickel in methanol (50 mL) was refluxed for $1-2 \mathrm{~h}$ and then filtered through a short column of flash silica gel. The filtrate was evaporated in vacuo, and the residue was chromatographed ($25 \% \mathrm{EtOAc}$ in hexane with $2 \% \mathrm{Et}_{3} \mathrm{~N}$) to give amine 16. In certain cases, $\mathbf{1 6}$ was used directly for the next transformation into 17.
(2S)-16a: $77 \% ;[\alpha]^{30}{ }_{D}=-4.7$ (c 4.3, CHCl_{3}); IR (neat) $v 3374$ cm^{-1}; ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 1.01(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 3 \mathrm{H})$, 1.15 (s, 18 H), $1.28(\mathrm{~s}, 3 \mathrm{H}), 1.55-1.69(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 2.84(\mathrm{q}, \mathrm{J}=$ $6.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.39-3.56(\mathrm{~m}, 4 \mathrm{H}), 3.87(\mathrm{dt}, \mathrm{J}=4.7,8.2 \mathrm{~Hz}, 1$ $\mathrm{H}), 3.95(\mathrm{dt}, \mathrm{J}=4.5,8.2 \mathrm{~Hz}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C} \mathrm{NMR}^{\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right)}$ $\delta 17.8,21.7,27.4,53.6,62.4,63.3,73.1,78.3,79.0,112.1$.
(2S)-16b: 80\%; IR (neat) $v 3383 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 300$ $\mathrm{MHz}) \delta 0.83(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.95-1.59[(\mathrm{~m}, 29 \mathrm{H})$, embodied a singlet at $\delta 1.12(\mathrm{~s}, 18 \mathrm{H})$, a singlet at $\delta 1.26(\mathrm{~s}, 3$ H)], 2.59 (dd, J $=2.2,10.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.40-3.56(\mathrm{~m}, 4 \mathrm{H}), 3.87$ (dt, J $=5.0,8.1 \mathrm{~Hz}, 1 \mathrm{H}$), $3.95\left(\mathrm{dt}, \mathrm{J}=4.5,8.1 \mathrm{~Hz}, 1 \mathrm{H}\right.$); ${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 13.9,21.3,22.7,27.3,29.1,31.5,58.1$, 62.3, 63.1, 72.9, 78.4, 78.6, 112.1; HRMS cal cd for $\mathrm{C}_{19} \mathrm{H}_{40} \mathrm{O}_{4} \mathrm{~N}$ $\left(M^{+}+1\right) 346.2957$, found 346.2957 .

General Procedure for the Synthesis of Phthalimide 17. A mixture of $\mathbf{1 6}(1.0 \mathrm{mmol})$ and phthalic anhydride (1.0 mmol) in ether (50 mL) was stirred at rt for 2 h . Solvent was removed in vacuo to give the residue to which were added excess $\mathrm{NaOAc}(10.0 \mathrm{mmol})$ and acetic anhydride (60 mL). The mixture was refluxed for 1 h . Water was added and the mixture was extracted with ether ($50 \mathrm{~mL} \times 3$), dried $\left(\mathrm{MgSO}_{4}\right)$,
and concentrated to give the residue which was chromatographed on silica gel (25% EtOAc in hexane) to give 17.
(2S)-17a: 91%; $\mathrm{mp} 95-9{ }^{\circ} \mathrm{C} ;[\alpha]^{24} \mathrm{D}=+4.1\left(\mathrm{c} 5.4, \mathrm{CHCl}_{3}\right)$; IR (KBr) $v 1713,1699 \mathrm{~cm}^{-1}{ }^{1}{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.10$ (s, 9 H), $1.17(\mathrm{~s}, 9 \mathrm{H}), 1.50(\mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 3.34(\mathrm{dd}, \mathrm{J}=$ $5.6,9.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.39-3.54(\mathrm{~m}, 3 \mathrm{H}), 3.85(\mathrm{q}, \mathrm{J}=6.2 \mathrm{~Hz}, 1$ H), 3.94 (dt, J $=5.2,6.2 \mathrm{~Hz}, 1 \mathrm{H}$), 4.24 (quint, J $=7.2 \mathrm{~Hz}, 1$ H), 5.58 (d, J $=7.2 \mathrm{~Hz}, 1 \mathrm{H}$), 7.63-7.83 (m, 4 H); ${ }^{13} \mathrm{C}$ NMR (75 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 14.2,27.3,27.4,50.6,62.4,63.1,73.1,73.2$, 78.7, 79.1, 103.1, 123.1, 132.0, 133.7, 168.1; HRMS calcd for $\mathrm{C}_{23} \mathrm{H}_{33} \mathrm{O}_{6} \mathrm{~N} 419.2308$, found 419.2294 .
(2S)-17b: $85 \% ;[\alpha]^{24} \mathrm{D}=-5.6$ (c 7.8, CHCl_{3}); IR (neat) $v 1716$ cm^{-1}; ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.81(\mathrm{t}, \mathrm{J}=6.7 \mathrm{~Hz}, 3 \mathrm{H})$, $1.09(\mathrm{~s}, 9 \mathrm{H}), 1.10-1.35[(\mathrm{~m}, 13 \mathrm{H})$, embodied a singlet at δ 1.17 (s, 9H)], 1.69-1.92 (m, 1 H), 2.01-2.30 (m, 1 H), 3.263.57 (m, 4 H), 3.77-3.99 (m, 2 H), 4.11 (ddd, J = 4.1, 7.3, 11.4 $\mathrm{Hz}, 1 \mathrm{H}), 5.55(\mathrm{~d}, \mathrm{~J}=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.63-7.84(\mathrm{~m}, 4 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 13.9,22.3,27.2,27.3,27.4,28.2,55.6$, 62.5, 63.2, 73.1, 78.5, 79.1, 102.8, 123.2, 132.0, 133.8, 168.5; HRMS calcd for $\mathrm{C}_{26} \mathrm{H}_{39} \mathrm{O}_{6} \mathrm{~N} 461.2777$, found 461.2779.
(2S)-17c: 93\%; $[\alpha]^{30} \mathrm{D}=+10.2$ (c 1.7, CHCl_{3}); IR (neat) v $1777,1718 \mathrm{~cm}^{-1}$; 1 H NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.81(\mathrm{t}, \mathrm{J}=7.3$ $\mathrm{Hz}, 3 \mathrm{H}), 1.01-1.15[(\mathrm{~m}, 15 \mathrm{H})$, embodied a doublet at $\delta 1.07$ (d, J = $7.1 \mathrm{~Hz}, 3 \mathrm{H}$), a doublet at $\delta 1.09(\mathrm{~d}, \mathrm{~J}=7.4 \mathrm{~Hz}, 3 \mathrm{H})$, a doublet at $\delta 1.12(\mathrm{~d}, \mathrm{~J}=7.1 \mathrm{~Hz}, 6 \mathrm{H})$], $1.20-1.35(\mathrm{~m}, 1 \mathrm{H})$, $1.45(\mathrm{~s}, 3 \mathrm{H}), 1.64-1.89(\mathrm{~m}, 1 \mathrm{H}), 2.35-2.53(\mathrm{~m}, 1 \mathrm{H}), 3.40-$ $3.65(\mathrm{~m}, 6 \mathrm{H}), 3.87(\mathrm{dt}, \mathrm{J}=4.5,8.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.93$ (ddd, J = $4.2,6.3,8.7 \mathrm{~Hz}, 1 \mathrm{H}$), 4.24 (dd, J $=3.6,12.3 \mathrm{~Hz}, 1 \mathrm{H}$), $7.63-$ 7.82 (m, 4 H); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 14.1,21.7,21.8$, 21.9, 22.0, 22.2, 23.2, 25.2, 28.7, 58.6, 68.3, 68.7, 72.0, 72.2 78.3, 79.1, 110.8, 122.97, 123.1, 131.4, 132.2, 133.6, 133.8, 168.3, 169.0; HRMS calcd for $\mathrm{C}_{25} \mathrm{H}_{37} \mathrm{O}_{6} \mathrm{~N} 447.2621$, found 447.2621.
(2S)-17d: $82 \% ;[\alpha]^{24} \mathrm{D}=+19.4$ (c 1.2, CHCl_{3}); IR (neat) v 1775, 1717, $1699 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.13$ (s $9 \mathrm{H}), 1.15$ (s, 9 H), 1.43 (s, 3 H), 1.59 (d, J $=7.4 \mathrm{~Hz}, 3 \mathrm{H}$), $3.39-3.60(\mathrm{~m}, 4 \mathrm{H}), 3.8-3.96(\mathrm{~m}, 2 \mathrm{H}), 4.44(\mathrm{q}, \mathrm{J}=7.4 \mathrm{~Hz}, 1$ H), $7.61-7.82(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 12.8,22.9$, 27.4, 53.5, 62.7, 62.9, 73.1, 73.2, 79.0, 79.5, 110.9, 123.1, 131.9, 133.7, 168.4; HRMS calcd for $\mathrm{C}_{24} \mathrm{H}_{36} \mathrm{O}_{6} \mathrm{~N}\left(\mathrm{M}^{+}+1\right)$ 434.2543, found 434.2538.
(2S)-17e: $85 \% ;[\alpha]^{24} \mathrm{D}=+7.6$ (c 3.0, CHCl_{3}); IR (neat) $v 1775$, $1717,1699 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.81(\mathrm{t}$, J $=7.3$ $\mathrm{Hz}, 3 \mathrm{H}), 1.10-1.39[(\mathrm{~m}, 22 \mathrm{H})$, embodied a singlet at $\delta 1.13$ ($\mathrm{s}, 9 \mathrm{H}$), a singlet at $\delta 1.15(\mathrm{~s}, 9 \mathrm{H})], 1.43(\mathrm{~s}, 3 \mathrm{H}), 1.73-1.89$ (m, 1 H), 2.35-2.52 (m, 1 H), 3.41-3.58 (m, 4 H), 3.78-3.93 (m, 2 H), 4.25 (dd, J = 3.6, $12.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.63-7.84(\mathrm{~m}, 4 \mathrm{H})$;
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 13.9,22.2,23.2,25.1,27.3,28.7$ 58.6, 62.7, 62.8, 73.0, 73.1, 78.9, 79.3, 110.7, 123.0, 123.1, 131.4, 132.2, 133.6, 133.8, 168.3, 169.0; HRMS calcd for $\mathrm{C}_{27} \mathrm{H}_{41} \mathrm{O}_{6} \mathrm{~N}$ 475.2934, found 475.2938.

Phthalimide 25. In a manner similar to that described above, a mixture of dl-14 ($0.59 \mathrm{~g}, 2.0 \mathrm{mmol}$) and MeLi (6 mL of a 1.6 M solution in ether, 9.6 mmol) in toluene (60 mL) was stirred at $-78{ }^{\circ} \mathrm{C}$ for 16 h . After usual workup, the crude 23 ($\mathrm{dr}=32 / 68$) was taken up into methanol (50 mL) to which was added excess Raney nickel (W2). The mixture was refluxed for 1 h and filtered through a short column of flash silica gel to yield crude 24. Without further purification, a mixture of crude 24, phthalic anhydride ($0.30 \mathrm{~g}, 2.0 \mathrm{mmol}$), and $\mathrm{NaOAc}(1.96 \mathrm{~g}, 20.0 \mathrm{mmol}$) in acetic anhydride (60 mL) was refluxed for 1 h . The mixture was worked up to give 25 ($0.22 \mathrm{~g}, 27 \%$). The diastereomeric mixture was separated by flash column chromatography (silica gel, 25\% EtOAc in hexane): 25a: $\mathrm{mp} 106-108{ }^{\circ} \mathrm{C}$; IR (KBr) $v 1771,1711 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.67$ (d, J $=7.2 \mathrm{~Hz}, 3 \mathrm{H}$), 4.58 (quint, $\mathrm{J}=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.73(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.79(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}$, 1 H), 6.03 (d, J $=7.2 \mathrm{~Hz}, 1 \mathrm{H}$), $7.12-7.35(\mathrm{~m}, 10 \mathrm{H})$; $7.65-$ $7.70(\mathrm{~m}, 2 \mathrm{H}), 7.79-7.83(\mathrm{~m}, 2 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 13.9,50.5,84.7,87.2,103.6,123.23,126.6,126.7,128.2,128.3$, 128.4, 128.5, 132.0, 133.9, 136.1, 136.9, 168.3; HRMS calcd for $\mathrm{C}_{25} \mathrm{H}_{21} \mathrm{O}_{4} \mathrm{~N}$ 399.1471, found 399.1494. 25b: IR (KBr) v $1771,1711 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.65(\mathrm{~d}, \mathrm{~J}=$ $6.9 \mathrm{~Hz}, 3 \mathrm{H}), 4.58$ (quint, J $=6.9 \mathrm{~Hz}, 1 \mathrm{H}$), $4.70(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}$, $1 \mathrm{H}), 4.74(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.05(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.12-$ $7.34(\mathrm{~m}, 10 \mathrm{H}), 7.65-7.70(\mathrm{~m}, 2 \mathrm{H}), 7.79-7.85(\mathrm{~m}, 2 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 14.4,50.8,85.3,87.0,103.7,123.3$, 126.6, 126.7, 128.3, 128.4, 128.5, 128.6, 132.0, 133.9, 135.8, 136.7, 168.3; HRMS calcd for $\mathrm{C}_{25} \mathrm{H}_{21} \mathrm{O}_{4} \mathrm{~N}$ 399.1471, found 399.1439

Acknowledgment. This work was supported by the National Science Council of the Republic of China.

Supporting Information Available: The experimental procedure and data for X-ray crystallography and ${ }^{1} \mathrm{H}$ NMR spectra for 8a-f, 9a-f, (2S)-15a-m, (2R)-15e, (2S)-16a,b, (2S)-17a-e, and 25a,b (50 pages). This material is contained in libraries on microfiche, immediately follows this article in the microfilm version of the journal, and can be ordered from the ACS; see any current masthead page for ordering information.

J O971700Y

[^0]: ${ }^{\dagger}$ Dedicated to Professor N. C. Yang on the occasion of his 70th birthday.
 (1) (a) J urczek, J.; Golebiowski, A. Chem. Rev. (Washington, D.C.) 1989, 89, 149. (b) Fisher, L. E.; Muchowski, J. M. Org. Prep. Proc. Int. 1990, 22, 399. (c) Ager, D. J.; Prakash, I.; Schaad, D. R. Chem. Rev (Washington, D.C.) 1996, 96, 835.
 (2) Noyori, R. Asymmetric Catalysis in Organic Synthesis; Wiley: New Y ork, 1994.
 (3) Seyden-Penne, J. Chiral Auxiliaries and Ligands in Asymmetric Synthesis; Wiley: New York, 1995.

[^1]: (4) (a) Thiam, M.; Chastrette, F. Tetrahedron Lett. 1990, 31, 1429 (b) Thiam, M.; Chastrette, F. Bull. Soc. Chem. Fr. 1992, 129, 161. (d) Enders, D.; Bettray, W. Pure Appl. Chem. 1996, 68, 569. (e) Itsuno, S.; Sasaki, M.; Kuroda, S.; Ito, K. Tetrahedron: Asymmetry 1995, 6, 1507. (f) Lassaletta, J .-M.; Fernández, R.; Martín-Zamora, E.; Díez, E. J. Am. Chem. Soc. 1996, 118, 7002. (g) Enders, D.; Reinhold: U. Liebigs Ann. 1996, 11.
 (5) (a) Mangeney, P.; Alexakis, A.; N ormant, J . F. Tetrahedron Lett. 1988, 29, 2677. (b) Alexakis, A.; Lensen, N.; Mangeney, P. Tetrahedron Lett. 1991, 32, 1171. (c) Alexakis, A.; Lensen, N.; Tranchier, J.-P. Mangeney, P. J. Org. Chem. 1992, 57, 4563. (d) Enders, D.; Funk, R.; Klatt, M.; Raabe, G.; H overstreydt, E. H. Angew. Chem., Int. Ed. Int. 1993, 32, 418. (e) Denmark, S. E.; Edwards, J. P.; Nicaise, O. J. Org Chem. 1993, 58, 569. (f) For a recent review, see: Alexakis, A.; Mangeney, P.; Lensen, N.; Tranchier, J.-P.; Gosmini, R.; Raussou, S. Pure Appl. Chem. 1996, 68, 531.
 (6) (a) Claremon, D. A.; Lumma, P. K.; Philips, B. T. J. Am. Chem. Soc. 1986, 108, 8265. (b) Alexakis, A.; Lensen, N.; Mangeney, P. Synlett 1991, 625. (c) Denmark, S. E.; Nicaise, O. Synlett 1993, 359.
 (7) (a) Cainelli, G.; Giacomini, D.; Mezzina, E.; Panunzio, M.; Zarantonello, P. Tetrahedron Lett. 1991, 32, 2967. (b) Cainelli, G.; Giacomini, D.; Panunzio, M.; Zarantonello, P. Tetrahedron Lett. 1992, 33, 7783. (c) Reetz, M. T.; J aeger, R.; Drewlies, R.; Hubel, M. Angew. Chem., Int. Ed. Engl. 1991, 30, 103.
 (8) (a) Tamura, Y.; Ko, T.; K ondo, H.; Annoura, H. Tetrahedron Lett. 1986, 27, 2117. (b) Tamura, Y.; Annoura, H.; Yamamoto, H.; Kondo, H.; Kita, Y.; Fujioka, H. Tetrahedron Lett. 1987, 28, 5709. (c) Tamura Y.; Annoura, H.; Fujioka, H. Tetrahedron Lett. 1987, 28, 5681. (d) Tamura, Y.; K ondo, H.; Annoura, H. Tetrahedron Lett. 1986, 27, 81. (e) Fujisawa, T.; Ichikawa, M.; Ukaji, Y.; Shimizu, M. Tetrahedron Lett. 1993, 34, 1307.
 (9) (a) Mash, E. A.; Nelson, K. A. J . Am. Chem. Soc. 1985, 107, 8256 (b) Mash, E. A.; Nelson, K. A. Tetrahedron 1987, 43, 679. (c) E. A Mash, D. S. Torok, J. Org. Chem. 1989, 54, 250. (d) Mash, E. A.; Hemperly, S. B.; Nelson, K. A.; Heidt, P. C.; Van Deusen, S. J. Org. Chem. 1990, 55, 2045. (e) Mash, E. A.; Hemperly, S. B. J. Org. Chem. 1990, 55, 2055.
 (10) (a) Compain, P.; Goré, J .; Vatèle, J .-M. Tetrahedron 1996, 52, 6647. (b) Wünsch, B.; Nerdinger, S. Tetrahedron Lett. 1995, 36, 8003. (c) Chitkal, B.; Pinyopronpanich, Y.; Thebtaranonth, C.; Thebtaranonth, C. Tetrahedron Lett. 1994, 35, 1099. (d) Kato, K.; Suemune, H.; Sakai, K. Tetrahedron 1994, 50, 3315. (e) H asegawa, K.; Matsuda, F.; Y anagiya, M.; Matsumoto, T. Tetrahedron Lett. 1987, 28, 1671. (f) J ung, M. E.; Lew, W. Tetrahedron Lett. 1990, 31, 623. (g) Lange, G. L.; Decicco, C. P. Tetrahedron Lett. 1988, 29, 2613.

[^2]: (11) (a) Yuan, T.-M.; Yeh, S.-M.; Hsieh, Y.-T.; Luh, T.-Y. J. Org. Chem. 1994, 59, 8192. (b) Yuan, T.-M.; Hsieh, Y.-T.; Yeh, S.-M.; Shyue, J .-J.; Luh, T.-Y. Synlett 1996, 53.
 (12) For reviews, see: (a) Luh, T.-Y. Synlett 1996, 201. (b) Luh, T.Y. Pure Appl. Chem. 1996, 68, 635.
 (13) Yeh, S.-M.; Huang, L.-H.; Luh, T.-Y. J . Org. Chem. 1996, 61, 3906.

[^3]: (17) F or the purpose of simplification, the numbering used throughout text is based on the numbering for the corresponding unprotected 2-aminoalkanals. Hence, the postion of attachment the amino or the hydrazino group in 15 is considered as C_{2}. The nomenclature for 15 should be 4,5-Bis(alkoxymethyl)-2-[1-(N', N'-dimethylhydrazino)alkyl]dioxolane.

[^4]: (18) Campi, E. M.; J ackson, W. R.; Perlmutter, P.; Tasdelen, E. E.

